
Online Gantt Chart Software

Summary
This report describes the process and findings from my attempt to do full end-to-end testing of Online
Gantt Chart. The reason for this test project was to practice my skills as a tester following the Rapid
Software Testing methodology.

I performed both experiential and instrumented testing. I performed primary and regression testing. I
tested every significant aspect of the product as I understood it. I found many bugs, including several
that I consider critical.

I would say that this product is not fit for use except as a demo or prototype of a possible design for
project management software. It cannot handle realistically complex project data with reasonable
performance and reliability.

Product Information
The Online Gantt Chart (https://www.onlinegantt.com) is a web-based project management tool that
helps visualize tasks and timelines in a clear, interactive format. It uses a horizontal bar chart to display
project schedules, showing task durations, dependencies, and milestones. It also has features like
resource allocation, progress tracking, multiple color schemes, project view, resource view, resource
and settings editing.

The Online Gantt Chart has a cloud version and a local version. I tested only the local, free version, that
does not require creating an account.

General Test Process
My test process started with an open exploration phase. I conducted survey testing to gather
information about the Online Gantt application, as I did not have any documentation, requirements, nor
access to the development team. I created a draft of the test strategy based on what I learned about the
product during the exploration. After several sessions of survey testing, I wrote down the test strategy. I
designed the strategy with the help of the Heuristic Test Strategy Model, which is part of the RST
methodology.

The test strategy is attached at the end of this report.

Test Results

Task Data Consistency Testing

Data consistency means that any different views of the same data communicate the same information.
For instance, a task with a Start and End date representing a five-day task should report a duration of
five days. The simplest form of data consistency testing is to verify that the output of the program
matches the data that I entered.

https://www.onlinegantt.com/#/gantt
https://www.onlinegantt.com/#/gantt
https://www.satisfice.com/download/heuristic-test-strategy-model

For my primary testing1 I opened the application, generated a new Gantt file, and added new tasks. I
tested that all fields (Task Name, Start/End Date, Duration, Progress, Color, Dependencies, Resources,
and Notes) can accept a variety of data and observed whether any constraints were violated. Since there
was no documentation about input constraints, I just applied my background knowledge. To test the
input fields, I used a variety of data types: empty fields, all types of single-byte characters (windows-
1252 code page), huge numbers of characters (e.g. 10000), and image data (I pasted a picture from
Excel). I applied CRUD operations to check the accuracy and consistency between input and output data.
I also checked that the data in the task area is consistent with the data in the timeline area and resource
view.

I checked that for a set of tasks, consisting of a parent task and subtasks, the parent task’s duration
spans from the earliest Start date among its subtasks to the latest End date, containing the full period of
its associated subtasks. I verified that the percentage in the Progress field of the parent task reflects the
weighted average of the percentages of its subtasks.

I also made various configuration settings to check for consistency in the task area. Most of the settings
are accurately reflected in the task area, however I did find some bugs.

I assessed the functionality of the Expand All, and Collapse All buttons, scroll bars, search box, and drop-
down lists. I checked the functions such as autofit, sorting, enabling/disabling columns, and filtering.

I exported the Gantt file in Excel, PDF, and Image files and compared the data displayed in the
application with the data exported in the files.

Some of the most interesting bugs I found related to the task data consistency are listed below:

 When using dates from the distant past and future, the application slows down and almost
crashes. Although the Notes tab is part of the Task Information, it is not displayed as a column in
the Task area.

 The default color is set to light blue. When no color type is selected in the task information, it is
displayed in the timeline area, but not in the task area. IDs in Resource View are not consistent
with the IDs in Project View.

 When all the days of the working week are disabled in settings, the timeline shows that only
weekends are disabled

 Any settings made in the project View such as column width, column visibility, sorter, and zoom
level get reset

 The table header in Project View is not consistent with the header in the Excel file (e.g. Task
Name vs Name, End vs Finish, Progress vs Complete). When sorting and filtering functions are
used, the exported files do not accurately reflect the data displayed on the online Gantt chart.

Timeline Accuracy Testing

To test the timeline section, I applied CRUD operations to individual and group tasks, with a dependency
relationship between them. I interacted with the chart bars to adjust task duration by dragging them left
or right. I set various durations (e.g. 1 day, 15 days, 1 month, 1 year…) and verified that the adjusted
duration in the timeline is consistent with the start and end dates in the task area. I verified that the
application is interactive, dynamically updated, and maintains consistency with the task area. Then, I
assessed the accuracy of the progress shown on the chart bars by settling on a specific progress level for

1 Primary testing is the form of testing that we do approaching a product for the first time (as opposed to
regression testing).

each task, including the parent-child relationship, and compared the progress percentages in both the
timeline and task area for consistency.

During the testing of the “Zoom in”, “Zoom out”, and “Zoom to fit” buttons, I discovered that when
zooming in to the maximum level:

 the application crashes
 the timeline showing the hours disappears
 the task dates are displayed on different dates on the timeline in accordance with the dates in

the task area
 workdays are highlighted instead of weekends

When zooming out to the maximum level dependencies cannot be properly visualized.

I also tested the timeline accuracy with various configuration settings. I found some inconsistencies
between the configuration settings and the timeline.

Task Dependency Testing

To test the dependencies, I started a new project and created individual tasks and parent-child
relationship tasks with different durations (1 day, 1 week, 1 year, 2 years). I tested the dependency
setup and how it can be adjusted using CRUD operations. I visually confirmed that the dependencies
reflected the established relationships and observed the system’s response to changes. I also set up
dependencies with positive and negative offsets, as well as tasks with multiple dependencies. I’ve tested
whether dependent tasks automatically adjusted their start and end dates when one of the tasks was
modified.

I used the drag-and-drop functionality to check that dependencies are dynamically updated after
taskbar reordering, to observe how the application responds to the changes, and to check the data
consistency in the timeline and task area.

Further, I examined how the system responded to invalid dependency setups (e.g., circular
dependencies).

I configured all the settings and checked how they affected the application’s behavior.

Finally, I exported the project to Excel, PDF, and Image formats and compared the data to verify that it
remained consistent across all exports.

Resource Testing

To test the resource section, I added several resources and assigned to each task a resource and
multiple resources. I evaluated input validation with various data types (special characters, numbers)
and tested the length limits during the resource addition. I applied CRUD operation in the Edit
Resources, Project View, and Resource View sections, to check the behavior of the system. I checked
that business rules are applied correctly when assigning resources: 1 resource to a task, 2 or more
resources to a task, 1 resource to many tasks, and that the assigned resources are consistent in
the project view, resource view, and exported files. I uploaded a Gantt file with 750 tasks, compared the
data for specific tasks displayed in both the project view and the resource view, and concluded that the
data in the resource view does not match the data in the project view.

GUI Charisma Testing

GUI Charisma Testing is an evaluation of how comfortable, pleasant, and productive it is to learn and use
this product.

Although I found it hard to use it for the first time, maybe I am not a representative user of this product.
This is the first time I have interacted with a project management application.

After I got over my confusion about how project management software works, I found the application is
easy to use. However, I found that the application can be annoying in some cases such as refreshing the
application and losing all the data, and each time I configure some task table settings and then change
the view, all the settings return to the default state. Also, when the name of a resource is changed, it is
disconnected from its assigned task. The application does not have any documentation about its
features.

Functions such as add, edit, and delete are easy to use, providing a smooth and efficient user
experience. The fonts, colors, icons, taskbars, dependency lines, and spacing are consistent throughout
the interface. However, some inconsistencies in the application are noted in the bug section.

The Online Gantt application has 5* ratings in the Reviews section. However, when accessing all the apps
where reviews about the Gantt chart are written, 4-star reviews can also be found.

Stress and Performance Testing

To test the performance of the application, I wrote a Playwright script
(https://github.com/SiposCristina/Onlinegantt.com_automation_code/tree/main). The script reads a
JSON file that contains 58 tasks, another with 258 tasks, and a third with 508 tasks. Each file is read by
the script and then it adds each task to the project. At the end of that process, the script performs a set
of characteristic operations on six tasks, including indenting them, setting dependencies, assigning
resources, and exporting project data.

The purpose is to collect data and analyze it to observe how the application responds as the number of
tasks increases.

The script was run on Chromium, Chrome, Firefox, Microsoft Edge, and WebKit browsers.

As the below charts illustrate, as more tasks are added, the application performance gradually slows
down. The chart representing the data collected from running the automation for 58 tasks shows that
the WebKit browser is inconsistent regarding the time it takes to add a task, with a dramatic spike in the
time when a task date falls on a weekend. When running the automation for 258 tasks, the chart shows
the same inconsistency for the WebKit browser, and at the end of the script, time to add a task spikes
for Microsoft Edge as well. Analyzing the automation for 508 tasks, it can be observed that the
Chromium browser has the same behavior. This pattern, with spikes in task addition times, points to
slower performance, which leads to an experience of a gradual, but annoying slowdown in the
application, which eventually makes it very hard to use. It is interesting that the performance dynamics
are substantially different between browsers.

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

se
co

nd
s

number of tasks

Performance in seconds when adding 58 tasks
Time to add a task

chromium firefox webkit chrome edge

0

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60

se
co

nd
s

number of tasks

Performance in seconds when adding 58 tasks
Time to add a task

chromium firefox webkit chrome edge

0

5

10

15

20

0 50 100 150 200 250

se
co

nd
s

number of tasks

Performance in seconds when adding 258 tasks
Time to add a task

chromium firefox webkit chrome edge

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

se
co

nd
s

number of tasks

Performance in seconds when adding 258 tasks
Time to add a task

chromium firefox webkit chrome edge

0

2

4

6

8

10

12

14

16

18

20

0 100 200 300 400 500

se
co

nd
s

number of tasks

Performance in seconds when adding 508 tasks
Time to add a task

chromium firefox webkit chrome edge

0

2

4

6

8

10

12

14

0 100 200 300 400 500

se
co

nd
s

number of tasks

Performance in seconds when adding 508 tasks
Time to add a task

chromium firefox webkit chrome edge

Also, the script provides information about how much time is required to indent six tasks, assign
resources to six tasks, and add dependencies and notes to four tasks. This data is collected after all tasks
(58, 258, and 508) have been added.

As illustrated in the chart below, the time required increases as more tasks are added, even when the
number of indented tasks, assigned resources, added dependencies and notes remains constant. This
indicates that the product becomes difficult to use as the size of the project reaches a couple hundred
tasks.

Compatibility Testing

I conducted the testing according to the test strategy.

When I ran the performance test script for 258 and 508 tasks under Firefox and WebKit, I observed a
strange behavior: the application failed to export the PDF and PNG files.

Negative Testing

Negative testing is testing the application by providing inputs or scenarios that violate required
conditions. The purpose of negative testing is to provoke error handling.

I tested the following scenarios:

 Field length limits (excessive character lengths e.g. 10000, all types of characters, including
special characters)

 Invalid dates (distant past and future dates, incorrect data combinations)
 Negative, zero, and large task duration (e.g. 1 year, 2 years, 5 years)
 Missing information (saving a task with empty start and end date fields)
 Dragging the Gantt Bar to Invalid Dates (dragging tasks to set and end date on a non-working

day)
 Adding duplicate resource names in the Edit Resource sections
 Invalid dependencies
 File import errors (imported incompatible file types e.g. PDF, PNG, added huge Gantt file e.g. a

file with 750 tasks)

0

50

100

150

200

250

0 100 200 300 400 500

se
co

nd
s

number of tasks

Indenting, Dependencies, Editing of 6 Tasks

chromium firefox webkit chrome edge

In several scenarios, error messages were not explicitly displayed; however, the application rejected
invalid inputs or actions and prevented them from being applied.

Data Loss Testing
To test the application behavior for data loss I imported the 750 tasks file and left the application open
overnight and over several days.

I opened a new project, added a few tasks, and then disconnected the laptop from the internet. I
checked the behavior of the application by applying the major operations in the project view (e.g. CRUD
operations, opening a new Gantt file, saving as a Gantt file, import/export file), as well as in edit
resources (adding resources) and edit settings section. The application was able to perform most of the
operations.

The application returned to its default state when I clicked on the refresh button, and when I clicked on
the back button, it took me to the Google page.

The application crashes when zoomed to the maximum level, resulting in data loss. When changing a
resource's name, the updated name is not displayed in the resource’s column. Undo / Redo operations
are non-functional.

Regression Testing
The strategy for regression testing was designed to assess how the application handles the major
activities. To achieve this, I wrote a Playwright script that reads a JSON file containing eight tasks. The
file is read by the script and adds each task to the project. Two tasks are designed as parent tasks, each
with three child tasks, resulting in six out of eight tasks being indented. Dependencies and notes are
added to four tasks, and resources are assigned six tasks. Once complete, the project file is exported as
an Excel, PDF, and Image file. The file names include the day and month of their export (e.g. downloads-
21DEC\before).

Once this cycle is complete, the script proceeds by renaming the tasks, changing the dependency types,
adding “Sunday” as a workday, and setting specific holiday dates for tasks scheduled on those days.
Screenshots are taken to provide better visualization of the project, then the project file is exported as
an Excel, PDF, and Image file. The file names include the day and month of their export (e.g. downloads-
21DEC\after).

As shown in the screenshots below, at the time they were captured, the application was handling the
activities as written in the script. The screenshots below are from the Chromium run.

I used the “comp” command in the regression testing process. comp is the Windows command used to
compare two files. I created a batch file called check.bat and I wrote the following code with the
guidance of my mentor, James Bach:

comp /M Masterfiles\before\Export_to_Excel_File.csv downloads-
%1\before\Export_to_Excel_File.csv

comp /M Masterfiles\before\Export_to_Image_File.png downloads-
%1\before\Export_to_Image_File.png

comp /M Masterfiles\before\Export_to_PDF_File.pdf downloads-
%1\before\Export_to_PDF_File.pdf

comp /M Masterfiles\after\Export_to_Excel_File.csv downloads-
%1\after\Export_to_Excel_File.csv

comp /M Masterfiles\after\Export_to_Image_File.png downloads-
%1\after\Export_to_Image_File.png

comp /M Masterfiles\after\Export_to_PDF_File.pdf downloads-
%1\after\Export_to_PDF_File.pdf

I compared the CSV, PDF, and PNG files. I created a folder called Masterfiles, with “before” and “after”
directories, where I saved the files from different test runs. These were then compared with the
dynamic folder path (downloads-1%).

I ran the test with this command: tests\check 21DEC, where tests is the folder containing the
check.bat batch file, and 21DEC is the folder containing the CSV file from the test run performed on
the 21st of December.

Also, there are no differences between the two CSV and PNG files, but there are differences between
the PDF files. This isn't due to a bug. Visually, the PDFs appear the same, but their binary data differs
every time they are generated. Since these differences don't affect how the files look, a binary
comparison doesn't provide meaningful insights.

Below are the test results displayed in the terminal:

Bugs
Critical bugs

 When refreshing the page, the application returns to its default page, and all the data is lost
 When zooming in too much the application crashes
 When changing the name of a resource, and returning to the project view, the updated resource

name is no longer displayed in the resource column
 Application crashes when a huge number is entered in the Duration field
 When you use a date from the distant past or future, the application crashes

Normal bugs
 Duration field accepts a negative number
 Autofit is disabled when going to resource view or when deleting a task
 Resources can be deleted without any warning message
 Although none of the work week check box is selected in the settings area, the enabled days in

the calendar (in the project view) are from Monday to Friday
 When using filters and/or sorting in the task area, and the file is exported in all three options

(Excel, PDF, PNG), the filters and the sorting are not applied to the exported files

 The Autofit feature from the Task Name field is disabled each time resource view or settings are
selected

 Task Name field accepts a huge number of characters (e.g. more than 400)
 Duration field accepts decimals
 When using the sort or filter function, the exported files do not accurately reflect the data

displayed on the online Gantt chart
 Occasionally, when a task is set for 1 day, it becomes invisible on the timeline
 When dragging a chart bar toward the left or the right, and releasing it abruptly, the bar doesn’t

settle at the position where it was clicked
 The chart bar cannot be dragged beyond the limits of the scroll bar
 The Value field in the Progress filter section accepts negative values
 There were no warning messages when adding a resource with the same name or adding a huge

number of characters in the resource field (e.g. 10000)
 When zooming in, the period in the chart bar does not align consistently with the task area
 When zoomed in to the maximum level, the timeline showing the hours disappears, the task is

displayed at a different date (inconsistency with the task area), workdays are highlighted instead
of weekends

 When zoomed out the bottom scroll bar disappears, and the dependencies between cannot be
seen on the timeline

 The dependency line is not visible on the timeline when it is set at the start of the week for the
entire project

 When working days are disabled from settings, and returning to project view, days from
Monday to Friday appear as working days

 Functions such as autofit, sorting, enabling/disabling columns options, filtering, zoom in/out,
and zoom to fit may be annoying due to their inconsistent behavior and illogical filtering
options.

 Whenever a column is disabled and switched to resource view or settings, the column is re-
enabled when I return to the project view

 When adjusting the middle bar to a specific position in the project view, it shifts when switching
to the resource view and then returning to the project view

 Offset field accepts a huge number of special characters
 Dependencies cannot be set by dragging from one task to another when both tasks are starting

on Monday, and Monday is set as the first day of the week
 Filtering by Start/End Date does not always work correctly

Minor bugs
 When adding a new task and the color is not selected, the blue color is added by default, and in

the task area the default color is not displayed, only in the timeline area
 ID’s number from the project view is different from the resource view
 Sort Ascending / Descending does not function properly
 The color column has features such as Sort Ascending / Descending and Filter
 Inconsistent field naming: Start / End fields in task area vs Start / End date in settings
 Filter options in the Duration section are not relevant and are not working correctly
 In Resource View New, Open, Save As, and Import/Export buttons are clickable
 In Edit Resources and Edit Settings, New, Open, and Save As buttons are clickable
 The default field in the Filter option under the Dependency and Resources column is not

consistent with the Task Name, Duration, and Color column

 If no color type is selected in the task information, it is displayed in the timeline area, but not in
the task area. Also, the non-working days are not well highlighted in the timeline area.

 The header text (e.g. Start, End, Progress %) in the task area is inconsistent with the text in the
pop-up box on the timeline (e.g. Start Date, End Date, Progress).

Discoveries
 Notes are not displayed in the task area
 Only the 5* ratings are displayed in the Reviews section. However, when accessing all the apps

where reviews about the Gantt chart are written, 4-star reviews can also be found
 Task area columns can be dragged to the left or right side of the screen
 The transition from one year to the next is neither highlighted nor marked
 Once a parent task is deleted, its child tasks are also deleted

Appendix: Test Strategy For OnlineGantt.com

The Online Gantt application is a basic web-based tool for project management that visually represents
a project’s timeline, tasks, and dependencies.

The purpose of this test strategy is to guide the testing of the Online Gantt application.

Risks and Activities
The following table lists the risks that the application might have. The risks are listed on the left side of
the table, and on the right side of the table are testing activities that help us understand the product's
status with respect to that risk area.

GUI Charisma Testing
The product may be awkward or
annoying to use in some ways.

 Check the consistency of colors, fonts, icons, and buttons
 Do beta testing to evaluate the application

Task Data Consistency Testing
Task data may have inconsistencies,
such as incorrect start/end dates,
calculations, durations, progress, or
dependencies.

 Check the accuracy and consistency
o of the data, dependencies, and resources in the task and

timeline area
o of the data displayed in different views
o between the data displayed in the application and the

exported files
 Use certain configurations of settings to check they are applied correctly

Timeline Accuracy Testing
The correctness of the display may
not be reflected in the task area.

 Interact dynamically with the display and check whether the changes are
reflected in the task area

 Use certain configurations of settings to check whether they are applied in
the task area

Task Dependency Testing
Dependencies may be applied
wrong.

 Check all combinations of dependencies
 Verify functions such as creating, modifying, and deleting dependencies
 Check the visual representation on the bar chart

Resource Testing
Operations that associate resources
with tasks may fail.

 Add, delete, and edit the resources
 Check if the changes made in the resources are reflected in the project and

resource view
Stress and Performance Testing
Adding a large number of tasks may
slow down or crash the application.

 Add a large number of tasks, dependencies, and resources simultaneously
and progressively

 Create a project that has a big timeline
 Import/export large files

Compatibility Testing
The application may not be
compatible with all browsers, and
devices.

 Test on:
o Chrome is my default browser, therefore everything in this

strategy is applied to Chrome
o Testing on Chrome tells me about Chromium; however, I also

will test using the Playwright Chromium browser project
o For the Firefox browser I will apply the test strategy
o Regression and performance automation only for WebKit and

Microsoft Edge
 Testing will be performed on Windows 10

Negative Testing
Erroneous conditions may not be
handled properly.

 Use bad data for the error/warning displays
 Import incompatible file types
 Delete tasks, dependencies, and resources
 Configure incorrect dependency types
 Simulate network disconnection

Data Loss Testing
The entire project or parts of the
project may be lost.

 Do not save or export and leave the application open over a long time
 Hit the refresh and the back button
 Test for the possibility of accidental deletion

Regression Testing
Changes may cause bugs in the
product.

 Test using automation for basic functionality, such as adding and deleting
tasks, updating tasks, adding and deleting dependencies and resources

https://www.onlinegantt.com/#/gantt

Product Coverage Outline
This is an outline of testable elements of the application which we use to help us plan and report the
testing while performing the test activities above.

Task
Task Management Operations

Add
New Task

General
ID
Name
Start Date
End Date
Duration
Progress
Color

Save
Cancel
Insert button from keyboard

Edit
Edit Button
Right Click on Existing Task

Task Information
Delete Task
Add

Above
Below
Child
Milestone

Delete Dependency
Convert

To Milestone
To Task

Updating timeline after editing
Delete
Indent
Outdent
Expand all
Collapse all
Zoom in
Zoom out
Zoom to fit

Header
ID
Name
Start Date
End Date
Duration
Progress %
Dependency
Resources
Color

Drop-down menu
Autofit all columns
Autofit this column
Sort Ascending
Sort Descending
Columns

Check Box
On
Off

Filter
Drop-down List

Starts with
Ends with
Contains
Equal
Not Equal

Enter Value
Buttons

Filter
Clear

Timeline
Today Check Box
Task Bar

Mouse drag and drop
Mouse Hover

Sub Task Bar
Mouse drag and drop

Start Date
End Date
Progress arrow

Mouse Hover
Task Link

Resources
Task / Sub Task / Independent Task

Add Resources
Edit Resources

Add
Delete

Resource View
Dependencies

Task / Sub Task
Add

ID
Name
Type

Start-Start
Start-Finish
Finish-Start
Finish-Finish

Offset
Minus Day
Plus Day

Delete
Buttons

Save
Cancel

Independent Task
File Handling Operations

New
Online (.gantt file)
Sava As (.gantt file)
Import / Export

Import from Excel File
Export to Excel File
Export to PDF File
Export to Image File

Configurations / Settings
Default Column Settings
Reset Task IDs
First Day of Week

Drop-down list
Work Week

Check boxes
Holidays

From
To

Search box
Browser window

Refresh
Resize
Zoom
Back button

Application Tool Bar
Show Entire Gantt Chart
Show Remaining Tasks
Show Overdue Tasks

